151 research outputs found

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her

    Shape in an Atom of Space: Exploring quantum geometry phenomenology

    Full text link
    A phenomenology for the deep spatial geometry of loop quantum gravity is introduced. In the context of a simple model, an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde

    Properties of the Volume Operator in Loop Quantum Gravity I: Results

    Full text link
    We analyze the spectral properties of the volume operator of Ashtekar and Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the classical volume expression for regions in three dimensional Riemannian space. Our analysis considers for the first time generic graph vertices of valence greater than four. Here we find that the geometry of the underlying vertex characterizes the spectral properties of the volume operator, in particular the presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is found to depend on the vertex embedding. We compute the set of all non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of valence 5--7, and argue that these sets can be used to label spatial diffeomorphism invariant states. We observe how gauge invariance connects vertex geometry and representation properties of the underlying gauge group in a natural way. Analytical results on the spectrum on 4-valent vertices are included, for which the presence of a volume gap is proved. This paper presents our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348 for important remarks regarding the sigma configurations. Subsequent computations have revealed some minor errors, which do not change the qualitative results but modify some of the numbers presented her

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    New insights in quantum geometry

    Full text link
    Quantum geometry, i.e., the quantum theory of intrinsic and extrinsic spatial geometry, is a cornerstone of loop quantum gravity. Recently, there have been many new ideas in this field, and I will review some of them. In particular, after a brief description of the main structures and results of quantum geometry, I review a new description of the quantized geometry in terms of polyhedra, new results on the volume operator, and a way to incorporate a classical background metric into the quantum description. Finally I describe a new type of exponentiated flux operator, and its application to Chern-Simons theory and black holes.Comment: 10 pages, 3 figures; Proceedings of Loops'11, Madrid, submitted to Journal of Physics: Conference Series (JPCS

    Degenerate Configurations, Singularities and the Non-Abelian Nature of Loop Quantum Gravity

    Full text link
    Degenerate geometrical configurations in quantum gravity are important to understand if the fate of classical singularities is to be revealed. However, not all degenerate configurations arise on an equal footing, and one must take into account dynamical aspects when interpreting results: While there are many degenerate spatial metrics, not all of them are approached along the dynamical evolution of general relativity or a candidate theory for quantum gravity. For loop quantum gravity, relevant properties and steps in an analysis are summarized and evaluated critically with the currently available information, also elucidating the role of degrees of freedom captured in the sector provided by loop quantum cosmology. This allows an outlook on how singularity removal might be analyzed in a general setting and also in the full theory. The general mechanism of loop quantum cosmology will be shown to be insensitive to recently observed unbounded behavior of inverse volume in the full theory. Moreover, significant features of this unboundedness are not a consequence of inhomogeneities but of non-Abelian effects which can also be included in homogeneous models.Comment: 28 pages, 1 figure; v2: extended discussion of singularity removal and summar

    Three-geometry and reformulation of the Wheeler-DeWitt equation

    Get PDF
    A reformulation of the Wheeler-DeWitt equation which highlights the role of gauge-invariant three-geometry elements is presented. It is noted that the classical super-Hamiltonian of four-dimensional gravity as simplified by Ashtekar through the use of gauge potential and densitized triad variables can furthermore be succinctly expressed as a vanishing Poisson bracket involving three-geometry elements. This is discussed in the general setting of the Barbero extension of the theory with arbitrary non-vanishing value of the Immirzi parameter, and when a cosmological constant is also present. A proposed quantum constraint of density weight two which is polynomial in the basic conjugate variables is also demonstrated to correspond to a precise simple ordering of the operators, and may thus help to resolve the factor ordering ambiguity in the extrapolation from classical to quantum gravity. Alternative expression of a density weight one quantum constraint which may be more useful in the spin network context is also discussed, but this constraint is non-polynomial and is not motivated by factor ordering. The article also highlights the fact that while the volume operator has become a preeminient object in the current manifestation of loop quantum gravity, the volume element and the Chern-Simons functional can be of equal significance, and need not be mutually exclusive. Both these fundamental objects appear explicitly in the reformulation of the Wheeler-DeWitt constraint.Comment: 10 pages, LaTeX fil

    Grasping rules and semiclassical limit of the geometry in the Ponzano-Regge model

    Get PDF
    We show how the expectation values of geometrical quantities in 3d quantum gravity can be explicitly computed using grasping rules. We compute the volume of a labelled tetrahedron using the triple grasping. We show that the large spin expansion of this value is dominated by the classical expression, and we study the next to leading order quantum corrections.Comment: 18 pages, 1 figur

    A semiclassical tetrahedron

    Get PDF
    We construct a macroscopic semiclassical state state for a quantum tetrahedron. The expectation values of the geometrical operators representing the volume, areas and dihedral angles are peaked around assigned classical values, with vanishing relative uncertainties.Comment: 10 pages; v2 revised versio

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page
    • …
    corecore